

Content Area	Course: Biotechnology	Grade Level: 10-12
	R14 The Seven Cs of Learn Character Citizenship Creativi	Communication Critical Thinking
Unit Titles	Leng	gth of Unit
Introduction to Biotechnology	• 3 weeks	
DNA Structure and Analysis	• 3 weeks	
Microbiology	• 3 weeks	
Polymerase Chain Reaction	• 3 weeks	
Bioethics	• 2 weeks	

Strands	Course Level Expectations
Structure and Function	 The structure of a DNA nucleotide and how its structure enhances the ability to separate DNA fragments Apply concept of gel electrophoresis to compare unknown DNA samples to a standard to see if there is a match Demonstrate various techniques to identify bacteria How antibiotics work and how they are tested in bacteria
Inheritance of Traits and Biodiversity	 Analyze food to determine if it was genetically modified. Construct an explanation using evidence for how PCR is used in scientific research Model the process of Polymerase Chain Reaction using a Thermal cycler
Bioethics	 Defend a position on a bioethical issue using evidence. Construct a scientific explanation using evidence outlining the risks and benefits of altering genetic composition

This page left blank intentionally.

Unit Title	Introduction to Biotechnology	Length of Unit	3 weeks

Inquiry Questions (Engaging & Debatable)	 How has biotechnology changed over time? What basic biotechnology techniques and equipment are important to know in order to execute proper procedures?
Standards*	HS-ETS1.1, HS-ETS1.2, HS-ETS1.2
Unit Strands &	DISCIPLINARY CORE IDEAS (DCI):
Concepts	Developing Possible Solutions
	Optimizing the Solution Design.
	Cross Cutting Concepts (CCC)
	Systems and System Models
Key Vocabulary	Biotechnology, genetic engineering, microbiology, DNA fingerprinting, molecular biology, transformation, biochemistry, Pipetting, aliquot, aseptic technique, chromatography, Volumetric flask, Autoclave, Microtubes, Serological pipets, Pipet pumps, Transfer pipets, Adjustable-volume micropipettes, Erlenmeyer flask

^{*}Standards based on Next Generation Science Standards (NGSS) For more information visit: https://www.nextgenscience.org/

Unit Title	Introduction to Biotechnology	Length of Unit	3 weeks
0 0 0	1 11101 0 011010111 0 0 2 1 0 0 0 1 1 1 1		0 00110

Critical Content: My students will Know	Key Skills: My students will be able to (Do)
 The definition of biotechnology Advances in technology have affected the biotechnology industry. Required safety practices and procedures in the classroom and laboratory environment. Different units of concentration Different separation techniques used in biotechnology. How to interpret MSDS sheets. Proper sterile technique. How to select, set and use a variety of pipettes or micropipettes within their designated ranges to measure small quantities. Proper pipetting technique. 	 Investigate a biotechnology timeline event and write a short synopsis of the significance of the event. Research the educational requirements and responsibilities for positions within the biotechnology industry. Write a standard operating procedure Interpret results and draw conclusions Calculate the amount of solute needed to make a specific solution. Create different molar solutions Calculate and demonstrate how to make a specific dilution from a stock solution Separate pigments using chromatography

Assessments:	Performance based assessment, MSDS sheets Activity, Chromatography lab Summative Assessment
Teacher Resources:	Brown, J. Kirk. <i>Biotechnology</i> . Hercules: Bio-Rad Laboratories, 2011. Print. Brown, J. Kirk. <i>Biotechnology: A Laboratory Skills Course Teacher Supplement</i> . Hercules: Bio-Rad Laboratories, Inc., 2011. Print., Region 14 Implementation Guide

Unit Title	DNA Structure and Analysis	Length of Unit	3 weeks

Inquiry Questions (Engaging & Debatable)	 How does the structure of DNA promote its use in biotechnology? How can DNA be used to identify an organism?
Standards	HS-LS1-1, HS-LS3-1
Unit Strands &	DISCIPLINARY CORE IDEAS (DCI):
Concepts	Structure and Function
	Inheritance of Traits
	Cross Cutting Concepts (CCC)
	Structure and Function
Key Vocabulary	DNA, nucleotide, restriction enzyme, gel-electrophoresis, recombinant DNA, genetic engineering Vortex, centrifuge, buffer

Unit Title	DNA Structure and Analysis	Length of Unit	3 Weeks

Critical Content:	Key Skills:	
My students will Know	My students will be able to (Do)	
 The structure of a DNA nucleotide and formation of DNA double helix using appropriate terminology. How the structure of DNA enhances the ability to separate DNA fragments How restriction enzymes cut DNA into fragments How to predict where restriction enzymes will cut in a bacteriophage lambda DNA sequence How gel electrophoresis works to separate DNA fragments. How to determine the lengths of DNA fragments using a known standard 	 Prepare and cast a gel for gel electrophoresis Interpret gel bands and identify patterns Isolate DNA from cells Apply concept of gel electrophoresis to compare unknown DNA samples to a standard to see if there is a match Predict restriction enzyme cutting sites using online technology 	

Assessments:	Formative Assessment on DNA structure, Performance based assessment DNA Lab , Casting of Agarose gels – students make gels Forensic Lab, Summative Assessment
Teacher Resources:	Brown, J. Kirk. <i>Biotechnology</i> . Hercules: Bio-Rad Laboratories, 2011. Print. Brown, J. Kirk. <i>Biotechnology: A Laboratory Skills Course Teacher Supplement</i> . Hercules: BIO-RAD Laboratories, Inc., 2011. Print., Region 14 Implementation Guide

Unit Title	Microbiology	Length of Unit	3 weeks

Inquiry Questions (Engaging & Debatable)	 How are microbes used in food production? How are antibodies used to identify unknown bacterial infections?
Standards	HS-LS2-3, HS-LS2-6, HS-LS3-2
Unit Strands &	DISCIPLINARY CORE IDEAS (DCI):
Concepts	 Cycles of Matter and Energy Transfer in Ecosystems Ecosystem Dynamics, Functioning, and Resilience Variation of Traits Cross Cutting Concepts (CCC) Energy and Matter Stability and Change Cause and Effect
Key Vocabulary	Aseptic technique, bacterial fermentation, Elisa assay, antibiotic, aerobic, anaerobic, antibody, petri plate, media, media tube, inoculation loop, agar plates

Unit Title	Microbiology	Length of Unit	3 weeks

Critical Content:	Key Skills:
My students will Know	My students will be able to (Do)
 How antibiotics work and how they are tested in bacteria The different bacterial fermentation processes How microbes are used in food production Antibiotics kill bacteria. There are specific tests that can be done to determine the type of microorganism present Bacteria can be identified by the sugars it consumes and the waste products it produces. Bacteria can be identified by the antibodies produced by the host. 	 Prepare microbiology media for bacterial growth and pour plates aseptically. Demonstrate aseptic technique to transfer bacteria Perform an Eliza Assay Observe and document bacteria characteristics Perform bacterial fermentations to identify bacteria

Assessments:	Sterile Techniques Lab, Bacteria Fermentations lab, Microbiology techniques lab Summative Assessment
Teacher Resources:	Brown, J. Kirk. <i>Biotechnology</i> . Hercules: BIO-RAD Laboratories, 2011. Print. Brown, J. Kirk. <i>Biotechnology: A Laboratory Skills Course Teacher Supplement</i> . Hercules: Bio-Rad Laboratories, Inc., 2011. Print. Region 14 Implementation Guide

Unit Title	Polymerase Chain Reaction	Length of Unit	3 Weeks

Inquiry Questions (Engaging & Debatable)	How does PCR facilitate research in the genetics field?
Standards	HS-LS1-1, HS-LS2-3, HS-LS3-2
Unit Strands &	DISCIPLINARY CORE IDEAS (DCI):
Concepts	Structure and Function
	Cycles of Matter and Energy Transfer in Ecosystems
	Variation of Traits
	Cross Cutting Concepts (CCC)
	Energy and Matter
	Cause and Effect
	Structure and Function
Key Vocabulary	Genetically modified organism (GMO), Polymerase Chain Reaction (PCR), thermal cycler, polymerase, denaturation, annealing, extension, primer, instagene matrix

Unit Title	Polymerase Chain Reaction	Length of Unit	3 Weeks

Critical Content: My students will Know	Key Skills: My students will be able to (Do)
 How PCR is used i the research Polymerase Chain Reaction (PCR) is a powerful tool that allows scientists to produce billions of copies of DNA or a gene sequence in a short period of time for their further study. PCR has enabled scientists to analyze DNA sequences to determine their genomes. Genetic modifications in foods can be detected using PCR. 	 Analyze food to determine if it was genetically modified. Construct an explanation using evidence for how PCR is used in scientific research Model the process of Polymerase Chain Reaction using a Thermal cycler

Assessments:	Performance based assessment- PCR Laboratory techniques Lab: GMO detection by PCR Summative Assessment
Teacher Resources:	Brown, J. Kirk. <i>Biotechnology</i> . Hercules: BIO-RAD Laboratories, 2011. Print. Brown, J. Kirk. <i>Biotechnology: A Laboratory Skills Course Teacher Supplement</i> . Hercules: BIO-RAD Laboratories, Inc., 2011. Print. Region 14 Implementation Guide

Unit Title	Bioethics	Length of Unit	2 Weeks
Inquiry Questions (Engaging & Debatable)	 Should there be international bioethics regulations recognized by all countries? Should we clone humans or be able to design babies? 		
Standards	HS-LS2-7, HS-LS4-6		
Unit Strands &	DISCIPLINARY CORE IDEAS (DCI):		
Concepts	Biodiversity and Humans		
	Adaptation		
	Cross Cutting Concepts (CCC)		
	Stability and Change		
	Cause and Effect		
Key Vocabulary	Bioethics, Pro, Con, excellent justification, weak justification, scientific community	stakeholders, social	responsibilities,

Unit Title	Bioethics	Length of Unit	2 weeks

Critical Content: My students will Know	Key Skills: My students will be able to (Do)
 How to evaluate reputable sources of information How Scientific advances require establishment of regulations. With information comes responsibility for maintaining people's' privacy. Most scientific advances require ethical decisions. The risks and benefits of altering the genetic composition and cell products of existing organisms. 	 Defend a position on a bioethical issue using evidence. Construct a scientific explanation using evidence outlining the risks and benefits of altering genetic composition

Assessments:	Checkpoints on ethical issue symposium research Presentation of opposing sides of a bioethical issue – symposium
Teacher Resources:	Brown, J. Kirk. Biotechnology. Hercules: Bio-Rad Laboratories, 2011. Print. Brown, J. Kirk. Biotechnology: A Laboratory Skills Course Teacher Supplement. Hercules: Bio-Rad Laboratories, Inc., 2011. Print. Region 14 Implementation Guide